$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
Home
Calculus
Linear Algebra
Quantum Mechanics
Future Topics
About
  • Follow:
  • Feed
plant pinksnow pinkmint
© 2019 Neu. Powered by Jekyll & Minimal Mistakes.

Quantum Mechanics Index

(alphabetized)
  • A Postulate Or Two Or Six
  • Bloche Sphere
  • Bohr Frequency
  • Braket
  • Commutator
  • Compatible
  • Density Matrix
  • Ehrenfest Theorem
  • Expectation Value
  • Finite Potential Well
  • Flunctation
  • Hamiltonian
  • Hermitian
  • Hilbert Space
  • Infinite Potential Well
  • Ladder Operators
  • Magnetic Resonance
  • Mixed State
  • Neutrino Oscillations
  • Normalization
  • Number Operator
  • Observable
  • Operator
  • Phase Shift
  • Projection
  • Quantum Harmonic Oscillator
  • Shrodingers Equation
  • Spin Flip
  • Spin System In A Magnetic Field
  • Spin
  • State
  • Time Independent Hamiltonian
  • Uncertainty Principle
  • Unitary Transformations
  • Wavefunction
  • $|a|^2=|a^2|$ for all $a\in\mathbb{C}$.
  • $|e^a|=\sqrt{e^ae^{\bar{a}}}$, for $a\in \mathbb{C}$ and $\bar{a}$ is the complex conjungate
  • $e^{ix}+e^{-ix}=2\cos x$
  • $\cos(x)=\text{Re}(e^{ix})$
  • $\sin(x)=\text{Im}(e^{ix})$
  • Let $z=a+bi$. $|z|=z^*z=|a+b|^2=|a|^2 +|b|^2 + \text{Re}(a^* b)$