$ \newcommand{\braket}[1]{\langle #1 \rangle}
\newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}}
\newcommand{\ket}[1]{\left\lvert#1 \right.\rangle}
\newcommand{\bra}[1]{\langle\left. #1\right\rvert}
\newcommand{\braket}[1]{\langle #1 \rangle}
\newcommand{\dd}{\text{d}}
\newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}}
\newcommand{\pdv}[2]{\frac{\partial}{\partial #1}}
$
Quantum Mechanics Index
(alphabetized)
- $|a|^2=|a^2|$ for all $a\in\mathbb{C}$.
- $|e^a|=\sqrt{e^ae^{\bar{a}}}$, for $a\in \mathbb{C}$ and $\bar{a}$ is the complex conjungate
- $e^{ix}+e^{-ix}=2\cos x$
- $\cos(x)=\text{Re}(e^{ix})$
- $\sin(x)=\text{Im}(e^{ix})$
- Let $z=a+bi$. $|z|=z^*z=|a+b|^2=|a|^2 +|b|^2 + \text{Re}(a^* b)$