FullPage
Overview
Notations
Concepts
$\mathbb{P}_k=\ket{a_k}\bra{a_k}$ is the projection onto the $k^{\text{th}}$ eigenstate.
Notations
Coming soonConcepts
If we sum over a complete set of states, then $$\begin{align*} \sum_{k}^{n}\ket{a_k}\bra{a_k}=1 \end{align*}$$The probability of measuring the state $\ket{a_n}$ can also be written $\text{Prob}(\ket{a_n})=|c_n|^2=\braket{\psi|\mathbb{P}_n|\psi}$
$\mathbb{P}_k=\ket{a_k}\bra{a_k}$ is the projection onto the $k^{\text{th}}$ eigenstate.
Notations
Coming soonConcepts
If we sum over a complete set of states, then $$\begin{align*} \sum_{k}^{n}\ket{a_k}\bra{a_k}=1 \end{align*}$$The probability of measuring the state $\ket{a_n}$ can also be written $\text{Prob}(\ket{a_n})=|c_n|^2=\braket{\psi|\mathbb{P}_n|\psi}$
FullPage
Overview
Notations
Concepts