FullPage
overview
significance
derivation
associated concepts
Significance
Coming soonDerivation
We consider a magnetic field along two axis $\vec{B}=B_0\hat{z}+B_1\hat{x}$. Define two larmour frequences of $\omega_0=\frac{eB_0}{m_e}$ and $\omega_1=\frac{eB_1}{m_e}$.The total energy is then $$\begin{align*} H&=-\muB_0\vec{z}-\muB_1\vec{x} \\ &=-g\frac{q}{2m}\vec{s_z}B_0\vec{z}-g\frac{q}{2m}\vec{s_x} \\ &=\frac{eB_0}{m_e}\vec{s_z}B_0\vec{z} +\frac{eB_1}{m_e}\vec{s_x}B_1\vec{x} \\ &=\omega_0S_z+\omega_1S_x \\ &=\frac{\hbar}{2}\begin{bmatrix}\omega_0 & \omega_1 \\ \omega_1 & -\omega_0\end{bmatrix} \end{align*}$$ To find the possible results and resultant states of this measurement, we need the eigenvalues and eigenstates of the Hamiltonian.
Associated Concepts
Coming soonSignificance
Coming soonDerivation
We consider a magnetic field along two axis $\vec{B}=B_0\hat{z}+B_1\hat{x}$. Define two larmour frequences of $\omega_0=\frac{eB_0}{m_e}$ and $\omega_1=\frac{eB_1}{m_e}$.The total energy is then $$\begin{align*} H&=-\muB_0\vec{z}-\muB_1\vec{x} \\ &=-g\frac{q}{2m}\vec{s_z}B_0\vec{z}-g\frac{q}{2m}\vec{s_x} \\ &=\frac{eB_0}{m_e}\vec{s_z}B_0\vec{z} +\frac{eB_1}{m_e}\vec{s_x}B_1\vec{x} \\ &=\omega_0S_z+\omega_1S_x \\ &=\frac{\hbar}{2}\begin{bmatrix}\omega_0 & \omega_1 \\ \omega_1 & -\omega_0\end{bmatrix} \end{align*}$$ To find the possible results and resultant states of this measurement, we need the eigenvalues and eigenstates of the Hamiltonian.
Associated Concepts
Coming soon
FullPage
overview
significance
derivation
associated concepts