$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
overview
significance
derivation
related experiments
associated concepts
In a finite potential well, there is tunnelling. $$\begin{align*} \psi(x)=\begin{cases} Ae^{qx} & x<-a \\ c\sin kx+d\cos kx & -aa \end{cases}, \end{align*}$$ where $q=\sqrt{\frac{2m(V_0-E)}{\hbar^2}}$

Significance

Coming soon

Derivation

Coming soon

Associated Concepts

Coming soon
In a finite potential well, there is tunnelling. $$\begin{align*} \psi(x)=\begin{cases} Ae^{qx} & x<-a \\ c\sin kx+d\cos kx & -aa \end{cases}, \end{align*}$$ where $q=\sqrt{\frac{2m(V_0-E)}{\hbar^2}}$

Significance

Coming soon

Derivation

Coming soon

Associated Concepts

Coming soon
FullPage
overview
significance
derivation
related experiments
associated concepts
FullPage
overview
significance
derivation
related experiments
associated concepts
In a finite potential well, there is tunnelling. $$\begin{align*} \psi(x)=\begin{cases} Ae^{qx} & x<-a \\ c\sin kx+d\cos kx & -aa \end{cases}, \end{align*}$$ where $q=\sqrt{\frac{2m(V_0-E)}{\hbar^2}}$

Significance

Coming soon

Derivation

Coming soon

Associated Concepts

Coming soon
In a finite potential well, there is tunnelling. $$\begin{align*} \psi(x)=\begin{cases} Ae^{qx} & x<-a \\ c\sin kx+d\cos kx & -aa \end{cases}, \end{align*}$$ where $q=\sqrt{\frac{2m(V_0-E)}{\hbar^2}}$

Significance

Coming soon

Derivation

Coming soon

Associated Concepts

Coming soon
FullPage
overview
significance
derivation
related experiments
associated concepts