FullPage
result
concepts
hypothesis
implications
proof
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for
$$\begin{align*}
P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix},
\end{align*}$$
$[T]_C=P^{-1}[T]_BP$
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for
$$\begin{align*}
P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix},
\end{align*}$$
$[T]_C=P^{-1}[T]_BP$
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof