$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
concepts
hypothesis
implications
proof
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for $$\begin{align*} P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix}, \end{align*}$$ $[T]_C=P^{-1}[T]_BP$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for $$\begin{align*} P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix}, \end{align*}$$ $[T]_C=P^{-1}[T]_BP$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for $$\begin{align*} P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix}, \end{align*}$$ $[T]_C=P^{-1}[T]_BP$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
Let $V$ be a finite dimensional vector space with basis $B=\{x_1, \dots, x_n\}$ and $C=\{y_1, \dots, y_n\}$ and $T:V\to V$. Then $[T]_b$ and $[T]_C$ are similar. Specifically, for $$\begin{align*} P=\begin{bmatrix}[y_1]_B & \dots & [y_n]_B\end{bmatrix}, \end{align*}$$ $[T]_C=P^{-1}[T]_BP$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof