FullPage
definition
concepts
used in
hypothesis
results
Let $V$ be a vector space and $S\subseteq V$ be a subset. The span of $S$, written $\text{span }S$ is the intersection of all subspaces of $V$ that contains $S$.
If $V=\text{span }S$, we say $S$ spans $V$
If $V=\text{span }S$, we say $S$ spans $V$
Concepts
Since $S\subseteq V$, the intersection will always be over a nonempty family of subspaces.$\text{span }S$ is a subspace of $V$, being an intersection of subspaces of $V$.
Used In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $V$ be a vector space and $S\subseteq V$ be a subset. The span of $S$, written $\text{span }S$ is the intersection of all subspaces of $V$ that contains $S$.
If $V=\text{span }S$, we say $S$ spans $V$
If $V=\text{span }S$, we say $S$ spans $V$
Concepts
Since $S\subseteq V$, the intersection will always be over a nonempty family of subspaces.$\text{span }S$ is a subspace of $V$, being an intersection of subspaces of $V$.
Used In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results