$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
concepts
hypothesis
implications
proof

Rank Nullity Theorem

Let $V$, $W$ be vector spaces with $V$ being finite dimensional. Let $T:V\to W$ be a linear transformation. Then $$\begin{align*} \text{rank}(T)+\text{null}(T)=\text{dim}(V) \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Rank Nullity Theorem

Let $V$, $W$ be vector spaces with $V$ being finite dimensional. Let $T:V\to W$ be a linear transformation. Then $$\begin{align*} \text{rank}(T)+\text{null}(T)=\text{dim}(V) \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof

Rank Nullity Theorem

Let $V$, $W$ be vector spaces with $V$ being finite dimensional. Let $T:V\to W$ be a linear transformation. Then $$\begin{align*} \text{rank}(T)+\text{null}(T)=\text{dim}(V) \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Rank Nullity Theorem

Let $V$, $W$ be vector spaces with $V$ being finite dimensional. Let $T:V\to W$ be a linear transformation. Then $$\begin{align*} \text{rank}(T)+\text{null}(T)=\text{dim}(V) \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof