FullPage
result
Concepts
If
Only If
proof
Properties of invertible matrices
Let $A$ and $B$ be $n\times n$ functions.- If $A$ is invertible, then so is $A^{-1}$ and $(A^{-1})^{-1}=A$
- If $A$ and $B$ are both invertible then so is $AB$ and $(AB)^{-1}=B^{-1}A^{-1}$
Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soonProperties of invertible matrices
Let $A$ and $B$ be $n\times n$ functions.- If $A$ is invertible, then so is $A^{-1}$ and $(A^{-1})^{-1}=A$
- If $A$ and $B$ are both invertible then so is $AB$ and $(AB)^{-1}=B^{-1}A^{-1}$
Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soon
FullPage
result
concepts
If
Only If
proof