FullPage
result
concepts
hypothesis
implications
proof
If $A$ is $n\times n$ and has a left inverse $B$ and a right inverse $C$, then $B=C$. Furthermore, the inverse $A^{-1}$ is unique.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
$$\begin{align*} B&= BI\\ &=B(AC) \\ &=(BA)C \\ &=IC\\ &=C \end{align*}$$
If $A$ is $n\times n$ and has a left inverse $B$ and a right inverse $C$, then $B=C$. Furthermore, the inverse $A^{-1}$ is unique.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
$$\begin{align*} B&= BI\\ &=B(AC) \\ &=(BA)C \\ &=IC\\ &=C \end{align*}$$
FullPage
result
concepts
hypothesis
implications
proof