FullPage
result
concepts
hypothesis
implications
proof
Elements of a Span
Let $V$ be a vector space over $\mathbb{F}$, and $S\subseteq V$ such that $S\neq \emptyset$. Then $\text{span }S$ is the set of all linear combinations of elements in $S$. That is, $$\begin{align*} \text{span }S=\{a_1x_1+\dots + a_kx_k:a_i\in\mathbb{F},x_i\in S, k\geq 1 \} \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonElements of a Span
Let $V$ be a vector space over $\mathbb{F}$, and $S\subseteq V$ such that $S\neq \emptyset$. Then $\text{span }S$ is the set of all linear combinations of elements in $S$. That is, $$\begin{align*} \text{span }S=\{a_1x_1+\dots + a_kx_k:a_i\in\mathbb{F},x_i\in S, k\geq 1 \} \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof