FullPage
result
Concepts
If
Only If
proof
Let $T:V\to V$ be a linear transformation. The following are equivalent.
- $\lambda$ is an eigenvector for $T$
- $E_{\lambda}=\text{ker}(T-\lambda I)\neq 0$
- $T-\lambda I$ is not invertible
- $\text{det}(T-\lambda I)=0$
Concepts
Since $T-\lambda I$ connutes with $T$ andIf
Coming soonOnly If
Coming soonProof
Coming soon
Let $T:V\to V$ be a linear transformation. The following are equivalent.
- $\lambda$ is an eigenvector for $T$
- $E_{\lambda}=\text{ker}(T-\lambda I)\neq 0$
- $T-\lambda I$ is not invertible
- $\text{det}(T-\lambda I)=0$
Concepts
Since $T-\lambda I$ connutes with $T$ andIf
Coming soonOnly If
Coming soonProof
Coming soon
FullPage
result
concepts
If
Only If
proof