Processing math: 0%
\newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}}
FullPage
result
concepts
hypothesis
implications
proof
If V is a vector space and P_1, \dots, P_k\in\mathcal{L}(V) are projections satisfying
  1. P_iP_j=0 if i\neq j
  2. P_1+\dots+ P_k=I_V
then V=V_1\oplus\dots\oplus V_k for V_i=\text{Ran}P_i.
Hence, direct sum decompositions correspond to families of projections satisfying the two properties.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
If V is a vector space and P_1, \dots, P_k\in\mathcal{L}(V) are projections satisfying
  1. P_iP_j=0 if i\neq j
  2. P_1+\dots+ P_k=I_V
then V=V_1\oplus\dots\oplus V_k for V_i=\text{Ran}P_i.
Hence, direct sum decompositions correspond to families of projections satisfying the two properties.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof
If V is a vector space and P_1, \dots, P_k\in\mathcal{L}(V) are projections satisfying
  1. P_iP_j=0 if i\neq j
  2. P_1+\dots+ P_k=I_V
then V=V_1\oplus\dots\oplus V_k for V_i=\text{Ran}P_i.
Hence, direct sum decompositions correspond to families of projections satisfying the two properties.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
If V is a vector space and P_1, \dots, P_k\in\mathcal{L}(V) are projections satisfying
  1. P_iP_j=0 if i\neq j
  2. P_1+\dots+ P_k=I_V
then V=V_1\oplus\dots\oplus V_k for V_i=\text{Ran}P_i.
Hence, direct sum decompositions correspond to families of projections satisfying the two properties.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof