$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
For $v_1, \dots, v_n\in\mathbb{R}^n$, let the determinant of $v_1, \dots, v_n$ be defined as the signed volume of a parallelpiped formed with $v_1, \dots, v_n$ ie. $\text{det}(v_1, \dots, v_n)=\text{signed volume of }P(v_1, \dots, v_n)$, where $P(v_1, \dots, v_n)=\{\alpha_1 v_1 + \dots + \alpha_n v_n: \alpha_1\in [0, 1]\}$. The convension is that for $v_1$ to $v_2$ where we go clockwise, the volume is positive and negative volume otherwise.
For a matrix $A\in M_n(P_n)$ with columns $v_1, \dots, v_n\in\mathbb{R}^n$, we define $\text{det} A=\text{det}(v_1, \dots, v_n)$

Concepts

In two dimension, two vectors can determine a parallelogram. In general for $n$ dimensions, $n$ vectors can determine a parallelpiped.
For the determinant, we are interested in the volume of the parallelpiped.
There are four basic properties of a determinant we want to cover.
  1. The determinant detects linear independence. That is, the determinant of a set is nonzero if and only if the set is linearly independent
  2. Antisymmetry. That is, $\text{det}(v_1, \dots, v_n)=-\text{det}(v_n, \dots, v_1)$
  3. Multilinearity. That is, if we fix all variables except the first, we can express the determinant as a sum of two separate determinants with each of the first terms and so $\text{det}(v_1+v_1', \dots, v_n)=\text{det}(v_1, \dots, v_n)+\text{det}(v_1', \dots, v_n)$.
  4. Normalized. That is, for unit vectors $e_1$, we have $\text{det}(e_1, \dots, e_n)=1$

For calculating the determinant, let $$\begin{align*} A=\begin{bmatrix}a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}. \end{align*}$$ Then $$\begin{align*} \text{det}(A)&=a_1\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n\end{bmatrix}\\ &=a_1a_2\begin{bmatrix}1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}\\ &=a_1\dots a_n\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \end{align*}$$ Note that for an upper triangular matrix if $a_{ii}=0$ for some $i$, then $A$ is not invertible, so $\text{det }A=0$
Recall that for elementary column operations, if we multiple one column by $\alpha$, then the determinant gets multiplied by $\alpha$. If we swap two columns, the determinant gets multiplied by $-1$, and adding scalar multiples of columns does not affect the determinant. Using this, we can create a formula to calculate the determinant.
Another method to calculate determinants is using cofactor expansion.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
For $v_1, \dots, v_n\in\mathbb{R}^n$, let the determinant of $v_1, \dots, v_n$ be defined as the signed volume of a parallelpiped formed with $v_1, \dots, v_n$ ie. $\text{det}(v_1, \dots, v_n)=\text{signed volume of }P(v_1, \dots, v_n)$, where $P(v_1, \dots, v_n)=\{\alpha_1 v_1 + \dots + \alpha_n v_n: \alpha_1\in [0, 1]\}$. The convension is that for $v_1$ to $v_2$ where we go clockwise, the volume is positive and negative volume otherwise.
For a matrix $A\in M_n(P_n)$ with columns $v_1, \dots, v_n\in\mathbb{R}^n$, we define $\text{det} A=\text{det}(v_1, \dots, v_n)$

Concepts

In two dimension, two vectors can determine a parallelogram. In general for $n$ dimensions, $n$ vectors can determine a parallelpiped.
For the determinant, we are interested in the volume of the parallelpiped.
There are four basic properties of a determinant we want to cover.
  1. The determinant detects linear independence. That is, the determinant of a set is nonzero if and only if the set is linearly independent
  2. Antisymmetry. That is, $\text{det}(v_1, \dots, v_n)=-\text{det}(v_n, \dots, v_1)$
  3. Multilinearity. That is, if we fix all variables except the first, we can express the determinant as a sum of two separate determinants with each of the first terms and so $\text{det}(v_1+v_1', \dots, v_n)=\text{det}(v_1, \dots, v_n)+\text{det}(v_1', \dots, v_n)$.
  4. Normalized. That is, for unit vectors $e_1$, we have $\text{det}(e_1, \dots, e_n)=1$

For calculating the determinant, let $$\begin{align*} A=\begin{bmatrix}a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}. \end{align*}$$ Then $$\begin{align*} \text{det}(A)&=a_1\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n\end{bmatrix}\\ &=a_1a_2\begin{bmatrix}1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}\\ &=a_1\dots a_n\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \end{align*}$$ Note that for an upper triangular matrix if $a_{ii}=0$ for some $i$, then $A$ is not invertible, so $\text{det }A=0$
Recall that for elementary column operations, if we multiple one column by $\alpha$, then the determinant gets multiplied by $\alpha$. If we swap two columns, the determinant gets multiplied by $-1$, and adding scalar multiples of columns does not affect the determinant. Using this, we can create a formula to calculate the determinant.
Another method to calculate determinants is using cofactor expansion.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
For $v_1, \dots, v_n\in\mathbb{R}^n$, let the determinant of $v_1, \dots, v_n$ be defined as the signed volume of a parallelpiped formed with $v_1, \dots, v_n$ ie. $\text{det}(v_1, \dots, v_n)=\text{signed volume of }P(v_1, \dots, v_n)$, where $P(v_1, \dots, v_n)=\{\alpha_1 v_1 + \dots + \alpha_n v_n: \alpha_1\in [0, 1]\}$. The convension is that for $v_1$ to $v_2$ where we go clockwise, the volume is positive and negative volume otherwise.
For a matrix $A\in M_n(P_n)$ with columns $v_1, \dots, v_n\in\mathbb{R}^n$, we define $\text{det} A=\text{det}(v_1, \dots, v_n)$

Concepts

In two dimension, two vectors can determine a parallelogram. In general for $n$ dimensions, $n$ vectors can determine a parallelpiped.
For the determinant, we are interested in the volume of the parallelpiped.
There are four basic properties of a determinant we want to cover.
  1. The determinant detects linear independence. That is, the determinant of a set is nonzero if and only if the set is linearly independent
  2. Antisymmetry. That is, $\text{det}(v_1, \dots, v_n)=-\text{det}(v_n, \dots, v_1)$
  3. Multilinearity. That is, if we fix all variables except the first, we can express the determinant as a sum of two separate determinants with each of the first terms and so $\text{det}(v_1+v_1', \dots, v_n)=\text{det}(v_1, \dots, v_n)+\text{det}(v_1', \dots, v_n)$.
  4. Normalized. That is, for unit vectors $e_1$, we have $\text{det}(e_1, \dots, e_n)=1$

For calculating the determinant, let $$\begin{align*} A=\begin{bmatrix}a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}. \end{align*}$$ Then $$\begin{align*} \text{det}(A)&=a_1\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n\end{bmatrix}\\ &=a_1a_2\begin{bmatrix}1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}\\ &=a_1\dots a_n\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \end{align*}$$ Note that for an upper triangular matrix if $a_{ii}=0$ for some $i$, then $A$ is not invertible, so $\text{det }A=0$
Recall that for elementary column operations, if we multiple one column by $\alpha$, then the determinant gets multiplied by $\alpha$. If we swap two columns, the determinant gets multiplied by $-1$, and adding scalar multiples of columns does not affect the determinant. Using this, we can create a formula to calculate the determinant.
Another method to calculate determinants is using cofactor expansion.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
For $v_1, \dots, v_n\in\mathbb{R}^n$, let the determinant of $v_1, \dots, v_n$ be defined as the signed volume of a parallelpiped formed with $v_1, \dots, v_n$ ie. $\text{det}(v_1, \dots, v_n)=\text{signed volume of }P(v_1, \dots, v_n)$, where $P(v_1, \dots, v_n)=\{\alpha_1 v_1 + \dots + \alpha_n v_n: \alpha_1\in [0, 1]\}$. The convension is that for $v_1$ to $v_2$ where we go clockwise, the volume is positive and negative volume otherwise.
For a matrix $A\in M_n(P_n)$ with columns $v_1, \dots, v_n\in\mathbb{R}^n$, we define $\text{det} A=\text{det}(v_1, \dots, v_n)$

Concepts

In two dimension, two vectors can determine a parallelogram. In general for $n$ dimensions, $n$ vectors can determine a parallelpiped.
For the determinant, we are interested in the volume of the parallelpiped.
There are four basic properties of a determinant we want to cover.
  1. The determinant detects linear independence. That is, the determinant of a set is nonzero if and only if the set is linearly independent
  2. Antisymmetry. That is, $\text{det}(v_1, \dots, v_n)=-\text{det}(v_n, \dots, v_1)$
  3. Multilinearity. That is, if we fix all variables except the first, we can express the determinant as a sum of two separate determinants with each of the first terms and so $\text{det}(v_1+v_1', \dots, v_n)=\text{det}(v_1, \dots, v_n)+\text{det}(v_1', \dots, v_n)$.
  4. Normalized. That is, for unit vectors $e_1$, we have $\text{det}(e_1, \dots, e_n)=1$

For calculating the determinant, let $$\begin{align*} A=\begin{bmatrix}a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}. \end{align*}$$ Then $$\begin{align*} \text{det}(A)&=a_1\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n\end{bmatrix}\\ &=a_1a_2\begin{bmatrix}1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}\\ &=a_1\dots a_n\begin{bmatrix}1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \end{align*}$$ Note that for an upper triangular matrix if $a_{ii}=0$ for some $i$, then $A$ is not invertible, so $\text{det }A=0$
Recall that for elementary column operations, if we multiple one column by $\alpha$, then the determinant gets multiplied by $\alpha$. If we swap two columns, the determinant gets multiplied by $-1$, and adding scalar multiples of columns does not affect the determinant. Using this, we can create a formula to calculate the determinant.
Another method to calculate determinants is using cofactor expansion.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results