$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
concepts
hypothesis
implications
proof

Combinations of Basis Change

Let $U, V, W$ be finite dimensional vector spaces with basis $B, C, D$ respectively. Let $T:U\to V$ and $S:V\to W$. Then $$\begin{align*} [ST]_{D\leftarrow B}=[S]_{D\leftarrow C}[T]_{C\leftarrow B} \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Combinations of Basis Change

Let $U, V, W$ be finite dimensional vector spaces with basis $B, C, D$ respectively. Let $T:U\to V$ and $S:V\to W$. Then $$\begin{align*} [ST]_{D\leftarrow B}=[S]_{D\leftarrow C}[T]_{C\leftarrow B} \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof

Combinations of Basis Change

Let $U, V, W$ be finite dimensional vector spaces with basis $B, C, D$ respectively. Let $T:U\to V$ and $S:V\to W$. Then $$\begin{align*} [ST]_{D\leftarrow B}=[S]_{D\leftarrow C}[T]_{C\leftarrow B} \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Combinations of Basis Change

Let $U, V, W$ be finite dimensional vector spaces with basis $B, C, D$ respectively. Let $T:U\to V$ and $S:V\to W$. Then $$\begin{align*} [ST]_{D\leftarrow B}=[S]_{D\leftarrow C}[T]_{C\leftarrow B} \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof