$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $A=[a_{in}]$ be $m\times n$. For some $x=[x_j]\in\mathbb{F}^n$, then $$\begin{align*} Ax&=\begin{bmatrix}a_{11}x_1+\dots + a_{1n}x_n\end{bmatrix} \end{align*} \\ &=x_1c_1+\dots + x_nc_n$$ where $c_j$ is the $j^{\text{th}}$ column of $A$. We say that $\text{span }\{c_1, \dots, c_n\}$ is the column space of $A$.
Let $r_1, \dots, r_m$ denote the rows of $A$. Then $\text{span }\{r_1, \dots, r_n\}$ is the row space of $A$.

Concepts

$A$ is row equivalent to a matrix $R$, if and only if they have the same row space.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $A=[a_{in}]$ be $m\times n$. For some $x=[x_j]\in\mathbb{F}^n$, then $$\begin{align*} Ax&=\begin{bmatrix}a_{11}x_1+\dots + a_{1n}x_n\end{bmatrix} \end{align*} \\ &=x_1c_1+\dots + x_nc_n$$ where $c_j$ is the $j^{\text{th}}$ column of $A$. We say that $\text{span }\{c_1, \dots, c_n\}$ is the column space of $A$.
Let $r_1, \dots, r_m$ denote the rows of $A$. Then $\text{span }\{r_1, \dots, r_n\}$ is the row space of $A$.

Concepts

$A$ is row equivalent to a matrix $R$, if and only if they have the same row space.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $A=[a_{in}]$ be $m\times n$. For some $x=[x_j]\in\mathbb{F}^n$, then $$\begin{align*} Ax&=\begin{bmatrix}a_{11}x_1+\dots + a_{1n}x_n\end{bmatrix} \end{align*} \\ &=x_1c_1+\dots + x_nc_n$$ where $c_j$ is the $j^{\text{th}}$ column of $A$. We say that $\text{span }\{c_1, \dots, c_n\}$ is the column space of $A$.
Let $r_1, \dots, r_m$ denote the rows of $A$. Then $\text{span }\{r_1, \dots, r_n\}$ is the row space of $A$.

Concepts

$A$ is row equivalent to a matrix $R$, if and only if they have the same row space.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $A=[a_{in}]$ be $m\times n$. For some $x=[x_j]\in\mathbb{F}^n$, then $$\begin{align*} Ax&=\begin{bmatrix}a_{11}x_1+\dots + a_{1n}x_n\end{bmatrix} \end{align*} \\ &=x_1c_1+\dots + x_nc_n$$ where $c_j$ is the $j^{\text{th}}$ column of $A$. We say that $\text{span }\{c_1, \dots, c_n\}$ is the column space of $A$.
Let $r_1, \dots, r_m$ denote the rows of $A$. Then $\text{span }\{r_1, \dots, r_n\}$ is the row space of $A$.

Concepts

$A$ is row equivalent to a matrix $R$, if and only if they have the same row space.

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results