$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
concepts
hypothesis
implications
proof

The Cayley-Hamilton Theorem

Let $V$ be a finite dimensional vector space and $T:V\to V$ a linear transformation. Then if $P_T(t)$ is the characteristic polynomial of $T$, then $P_T(T)=0$.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

The Cayley-Hamilton Theorem

Let $V$ be a finite dimensional vector space and $T:V\to V$ a linear transformation. Then if $P_T(t)$ is the characteristic polynomial of $T$, then $P_T(T)=0$.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof

The Cayley-Hamilton Theorem

Let $V$ be a finite dimensional vector space and $T:V\to V$ a linear transformation. Then if $P_T(t)$ is the characteristic polynomial of $T$, then $P_T(T)=0$.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

The Cayley-Hamilton Theorem

Let $V$ be a finite dimensional vector space and $T:V\to V$ a linear transformation. Then if $P_T(t)$ is the characteristic polynomial of $T$, then $P_T(T)=0$.

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof