$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
concepts
hypothesis
implications
proof
Let $V$, $W$ be finite dimensional vector spaces over $\mathbb{F}$. Let $B$ and $C$ be the basis for $V$ and $W$, and $T:V\to W$ be linear. Then $$\begin{align*} [T]_{C\leftarrow B}[v]_B=[Tv]_c \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
Let $V$, $W$ be finite dimensional vector spaces over $\mathbb{F}$. Let $B$ and $C$ be the basis for $V$ and $W$, and $T:V\to W$ be linear. Then $$\begin{align*} [T]_{C\leftarrow B}[v]_B=[Tv]_c \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof
Let $V$, $W$ be finite dimensional vector spaces over $\mathbb{F}$. Let $B$ and $C$ be the basis for $V$ and $W$, and $T:V\to W$ be linear. Then $$\begin{align*} [T]_{C\leftarrow B}[v]_B=[Tv]_c \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
Let $V$, $W$ be finite dimensional vector spaces over $\mathbb{F}$. Let $B$ and $C$ be the basis for $V$ and $W$, and $T:V\to W$ be linear. Then $$\begin{align*} [T]_{C\leftarrow B}[v]_B=[Tv]_c \end{align*}$$

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof