FullPage
result
concepts
hypothesis
implications
proof
Basis Change
Let $B$ and $B$ be a basis for $V$. Then there is an unique invertible matrix $A$ such that $$\begin{align*} A[v]_C=[v]_B \end{align*}$$ and $$\begin{align*} [v]_C=A^{-1}[v]_B. \end{align*}$$ The $j^{\text{th}}$ column of $A$ is $[y_j]_B$, where $C=\{y_1, \dots, y_n\}$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonBasis Change
Let $B$ and $B$ be a basis for $V$. Then there is an unique invertible matrix $A$ such that $$\begin{align*} A[v]_C=[v]_B \end{align*}$$ and $$\begin{align*} [v]_C=A^{-1}[v]_B. \end{align*}$$ The $j^{\text{th}}$ column of $A$ is $[y_j]_B$, where $C=\{y_1, \dots, y_n\}$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof