$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $I\subseteq\mathbb{R}^n$, $P$ a partition of $I$, $f:I\to\mathbb{R}$ a function, and $J$ the indexing set of $P$. Note that each subbox $I^{(\vec{\alpha})}$ is compact, which means that if $f$ is continuous, the minimum and maximum values are attained on each subbox. Then for each $\vec{\alpha}\in J$ we define $m^{(\vec{\alpha})}:=\inf_{\vec{x}\in I^{(\vec{\alpha})}} \{f(\vec{x})\}$ and $M^{(\vec{\alpha})}:=\sup_{\vec{x}\in I^{(\vec{\alpha})}}\{f(\vec{x})\}$ such that $$\begin{align*} m^{(\vec{\alpha})}\leq f(\vec{x})\leq M^{(\vec{\alpha})} \end{align*}$$ for all $\vec{x}\in I^{(\vec{\alpha})}$. Then we define the lower Riemann sum of $f$ with respect to $P$ as $$\begin{align*} L(f, P):=\sum_{\vec{\alpha}\in J}m^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}) \end{align*}$$. We define the upper Riemann sum of $f$ with respect to $P$ as $$\begin{align*} U(f, P):=\sum_{\vec{\alpha}\in J}M^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I\subseteq\mathbb{R}^n$, $P$ a partition of $I$, $f:I\to\mathbb{R}$ a function, and $J$ the indexing set of $P$. Note that each subbox $I^{(\vec{\alpha})}$ is compact, which means that if $f$ is continuous, the minimum and maximum values are attained on each subbox. Then for each $\vec{\alpha}\in J$ we define $m^{(\vec{\alpha})}:=\inf_{\vec{x}\in I^{(\vec{\alpha})}} \{f(\vec{x})\}$ and $M^{(\vec{\alpha})}:=\sup_{\vec{x}\in I^{(\vec{\alpha})}}\{f(\vec{x})\}$ such that $$\begin{align*} m^{(\vec{\alpha})}\leq f(\vec{x})\leq M^{(\vec{\alpha})} \end{align*}$$ for all $\vec{x}\in I^{(\vec{\alpha})}$. Then we define the lower Riemann sum of $f$ with respect to $P$ as $$\begin{align*} L(f, P):=\sum_{\vec{\alpha}\in J}m^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}) \end{align*}$$. We define the upper Riemann sum of $f$ with respect to $P$ as $$\begin{align*} U(f, P):=\sum_{\vec{\alpha}\in J}M^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $I\subseteq\mathbb{R}^n$, $P$ a partition of $I$, $f:I\to\mathbb{R}$ a function, and $J$ the indexing set of $P$. Note that each subbox $I^{(\vec{\alpha})}$ is compact, which means that if $f$ is continuous, the minimum and maximum values are attained on each subbox. Then for each $\vec{\alpha}\in J$ we define $m^{(\vec{\alpha})}:=\inf_{\vec{x}\in I^{(\vec{\alpha})}} \{f(\vec{x})\}$ and $M^{(\vec{\alpha})}:=\sup_{\vec{x}\in I^{(\vec{\alpha})}}\{f(\vec{x})\}$ such that $$\begin{align*} m^{(\vec{\alpha})}\leq f(\vec{x})\leq M^{(\vec{\alpha})} \end{align*}$$ for all $\vec{x}\in I^{(\vec{\alpha})}$. Then we define the lower Riemann sum of $f$ with respect to $P$ as $$\begin{align*} L(f, P):=\sum_{\vec{\alpha}\in J}m^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}) \end{align*}$$. We define the upper Riemann sum of $f$ with respect to $P$ as $$\begin{align*} U(f, P):=\sum_{\vec{\alpha}\in J}M^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I\subseteq\mathbb{R}^n$, $P$ a partition of $I$, $f:I\to\mathbb{R}$ a function, and $J$ the indexing set of $P$. Note that each subbox $I^{(\vec{\alpha})}$ is compact, which means that if $f$ is continuous, the minimum and maximum values are attained on each subbox. Then for each $\vec{\alpha}\in J$ we define $m^{(\vec{\alpha})}:=\inf_{\vec{x}\in I^{(\vec{\alpha})}} \{f(\vec{x})\}$ and $M^{(\vec{\alpha})}:=\sup_{\vec{x}\in I^{(\vec{\alpha})}}\{f(\vec{x})\}$ such that $$\begin{align*} m^{(\vec{\alpha})}\leq f(\vec{x})\leq M^{(\vec{\alpha})} \end{align*}$$ for all $\vec{x}\in I^{(\vec{\alpha})}$. Then we define the lower Riemann sum of $f$ with respect to $P$ as $$\begin{align*} L(f, P):=\sum_{\vec{\alpha}\in J}m^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}) \end{align*}$$. We define the upper Riemann sum of $f$ with respect to $P$ as $$\begin{align*} U(f, P):=\sum_{\vec{\alpha}\in J}M^{(\vec{\alpha})}\mu(I^{(\vec{\alpha})}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results