FullPage
definition
concepts
used in
hypothesis
results
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$, and $P_{p, \vec{a}}^f(\vec{x})$ be the pth order Taylor polynomial for $f$ at $\vec{a}$. The Taylor remainder of order $P$ is
$$\begin{align*}
R_{p, \vec{a}}^f(\vec{x}):=f(\vec{x})-P_{p, \vec{a}}^f(\vec{x})
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$, and $P_{p, \vec{a}}^f(\vec{x})$ be the pth order Taylor polynomial for $f$ at $\vec{a}$. The Taylor remainder of order $P$ is
$$\begin{align*}
R_{p, \vec{a}}^f(\vec{x}):=f(\vec{x})-P_{p, \vec{a}}^f(\vec{x})
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results