$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is $$\begin{align*} P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is $$\begin{align*} P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is $$\begin{align*} P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is $$\begin{align*} P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}). \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results