FullPage
definition
concepts
used in
hypothesis
results
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is
$$\begin{align*}
P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}).
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $U\subseteq\mathbb{R}^n$ be open, and $f\in C^p(I, \mathbb{R})$ for $p\geq 0$, and $\vec{a}, \vec{x}\in U$. For $f$ at the point $\vec{a}$, the pth order Taylor polynomial is
$$\begin{align*}
P_{p, \vec{a}}^f(\vec{x}):=f(\vec{a})+\sum_{k=1}^p\frac{1}{k!}[(\vec{h}\cdot\nabla)^kf](\vec{a}).
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results