FullPage
definition
concepts
used in
hypothesis
results
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be
$$\begin{align*}
I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}]
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be
$$\begin{align*}
I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}]
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results