$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be $$\begin{align*} I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}] \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be $$\begin{align*} I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}] \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be $$\begin{align*} I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}] \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I$ be a box, partitioned by $P$ with the associated indexing set $J$. For each $\vec{a}\in J$, we define the subbox $I^{(\vec{a})}$ to be $$\begin{align*} I^{(\vec{a})}:=[x_1^{(a_1-1)}, x_1^{a_1}]\times\dots\times[x_n^{(a_n-1)}, x_n^{a_n}] \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results