FullPage
result
concepts
hypothesis
implications
proof
Sequential Converges
Let $A\subseteq\mathbb{R}^n$ and $f:A\to\mathbb{R}^m$ for any point $\vec{a}\in A$, the following are equivalent:- $f$ is continuous at $\vec{a}$
- $\lim_{k\to\infty}f(\vec{x}_k)=f(\vec{a})$ for every seqyence in $A$ such that $\lim_{k\to\infty}\vec{x}_k=\vec{a}$.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonSequential Converges
Let $A\subseteq\mathbb{R}^n$ and $f:A\to\mathbb{R}^m$ for any point $\vec{a}\in A$, the following are equivalent:- $f$ is continuous at $\vec{a}$
- $\lim_{k\to\infty}f(\vec{x}_k)=f(\vec{a})$ for every seqyence in $A$ such that $\lim_{k\to\infty}\vec{x}_k=\vec{a}$.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof