FullPage
result
concepts
hypothesis
implications
proof
Second Derivative Test
Let $U\subseteq\mathbb{R}^n$ be open and let $f\in C^2(U, \mathbb{R})$. Suppose $\vec{a}\in U$ is a critical point of $f$ and let $Q:\mathbb{R}^n\to\mathbb{R}$ be the quadratic form associated with the Hessian matrix of $f$ at $\vec{a}$. Then- $\vec{a}$ is a local minimum of $f$ if $Q$ is positive definite.
- $\vec{a}$ is a local maximum of $f$ if $Q$ is negative definite
- $\vec{a}$ is a saddle point of $f$ if $Q$ is indefinite.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonSecond Derivative Test
Let $U\subseteq\mathbb{R}^n$ be open and let $f\in C^2(U, \mathbb{R})$. Suppose $\vec{a}\in U$ is a critical point of $f$ and let $Q:\mathbb{R}^n\to\mathbb{R}$ be the quadratic form associated with the Hessian matrix of $f$ at $\vec{a}$. Then- $\vec{a}$ is a local minimum of $f$ if $Q$ is positive definite.
- $\vec{a}$ is a local maximum of $f$ if $Q$ is negative definite
- $\vec{a}$ is a saddle point of $f$ if $Q$ is indefinite.
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof