FullPage
result
concepts
hypothesis
implications
proof
Riemann Integrals over Union of Sets
Let $S, T\subseteq\mathbb{R}^n$ be nonempty and bounded sets that satisfy $\mu(S\cap T)=0$. If $S\cup T\to\mathbb{R}$ is bounded and integrable on $S$ and on $T$, then $f$ is integrable on $S\cup T$ and $$\begin{align*} \int_{S\cup T}f(\vec{x})d\vec{x}=\int_S f(\vec{x})d\vec{x}+\int_T f(\vec{x}) d\vec{x} \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonRiemann Integrals over Union of Sets
Let $S, T\subseteq\mathbb{R}^n$ be nonempty and bounded sets that satisfy $\mu(S\cap T)=0$. If $S\cup T\to\mathbb{R}$ is bounded and integrable on $S$ and on $T$, then $f$ is integrable on $S\cup T$ and $$\begin{align*} \int_{S\cup T}f(\vec{x})d\vec{x}=\int_S f(\vec{x})d\vec{x}+\int_T f(\vec{x}) d\vec{x} \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof