$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $f(\vec{x})$ be a bounded function on a nonempty and bounded domain, $S\subseteq\mathbb{R}^n$. Define a function $g:I\to\mathbb{R}$, where $I$ is a box such that $S\subseteq I$, where $$\begin{align*} g(\vec{x}):=\begin{cases}f(\vec{x}) & \vec{x}\in S \\ 0 & \vec{x}\in I\backslash S\end{cases} \end{align*}$$ We say that $f$ is Riemann integrable on S if $g$ is Riemann integrable on $I$, and we define $$\begin{align*} \int_{S}f(\vec{x})d\vec{x} = \int_I g(\vec{x}) d\vec{x} \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $f(\vec{x})$ be a bounded function on a nonempty and bounded domain, $S\subseteq\mathbb{R}^n$. Define a function $g:I\to\mathbb{R}$, where $I$ is a box such that $S\subseteq I$, where $$\begin{align*} g(\vec{x}):=\begin{cases}f(\vec{x}) & \vec{x}\in S \\ 0 & \vec{x}\in I\backslash S\end{cases} \end{align*}$$ We say that $f$ is Riemann integrable on S if $g$ is Riemann integrable on $I$, and we define $$\begin{align*} \int_{S}f(\vec{x})d\vec{x} = \int_I g(\vec{x}) d\vec{x} \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $f(\vec{x})$ be a bounded function on a nonempty and bounded domain, $S\subseteq\mathbb{R}^n$. Define a function $g:I\to\mathbb{R}$, where $I$ is a box such that $S\subseteq I$, where $$\begin{align*} g(\vec{x}):=\begin{cases}f(\vec{x}) & \vec{x}\in S \\ 0 & \vec{x}\in I\backslash S\end{cases} \end{align*}$$ We say that $f$ is Riemann integrable on S if $g$ is Riemann integrable on $I$, and we define $$\begin{align*} \int_{S}f(\vec{x})d\vec{x} = \int_I g(\vec{x}) d\vec{x} \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $f(\vec{x})$ be a bounded function on a nonempty and bounded domain, $S\subseteq\mathbb{R}^n$. Define a function $g:I\to\mathbb{R}$, where $I$ is a box such that $S\subseteq I$, where $$\begin{align*} g(\vec{x}):=\begin{cases}f(\vec{x}) & \vec{x}\in S \\ 0 & \vec{x}\in I\backslash S\end{cases} \end{align*}$$ We say that $f$ is Riemann integrable on S if $g$ is Riemann integrable on $I$, and we define $$\begin{align*} \int_{S}f(\vec{x})d\vec{x} = \int_I g(\vec{x}) d\vec{x} \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results