FullPage
result
concepts
hypothesis
implications
proof
Relation between derivatives of differentable point
Let $S\subseteq\mathbb{R}^n$, $\vec{a}\in \text{int}(A)$, and $f:A\to\mathbb{R}^m$. Suppose $f$ is differentiable at $\vec{a}$ and let $T=Df(\vec{a})$ be the derivative of $f$ at $\vec{a}$. Then:- For every unit vector $\vec{u}\in \mathbb{R}^n$,the directional derivative of $f$ at $\vec{a}$ in the direction $\vec{u}$ exists and is $D_{\vec{u}}f(\vec{a})=T(\vec{u})$.
- All partial derivatives $\frac{\partial f_i}{\partial x_j}(\vec{a})$, $1\leq i\leq m$, $1\leq j\leq n$, exists.
- The $m\times n$ matrix representing $T$ in the standard basis is the Jacobian matrix $$\begin{align*} J=\begin{bmatrix}\partial{\partial f_1}{\partial x_1}(\vec{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\vec{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{a})& \dots & \frac{\partial f_m}{\partial x_n}(\vec{a}) \end{bmatrix} \end{align*}$$
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonRelation between derivatives of differentable point
Let $S\subseteq\mathbb{R}^n$, $\vec{a}\in \text{int}(A)$, and $f:A\to\mathbb{R}^m$. Suppose $f$ is differentiable at $\vec{a}$ and let $T=Df(\vec{a})$ be the derivative of $f$ at $\vec{a}$. Then:- For every unit vector $\vec{u}\in \mathbb{R}^n$,the directional derivative of $f$ at $\vec{a}$ in the direction $\vec{u}$ exists and is $D_{\vec{u}}f(\vec{a})=T(\vec{u})$.
- All partial derivatives $\frac{\partial f_i}{\partial x_j}(\vec{a})$, $1\leq i\leq m$, $1\leq j\leq n$, exists.
- The $m\times n$ matrix representing $T$ in the standard basis is the Jacobian matrix $$\begin{align*} J=\begin{bmatrix}\partial{\partial f_1}{\partial x_1}(\vec{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\vec{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{a})& \dots & \frac{\partial f_m}{\partial x_n}(\vec{a}) \end{bmatrix} \end{align*}$$
Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof