$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $I=[a_1, b_1]\times \dots \times [a_n, b_n]$ be a box. For each $k\in\{1, \dots, n\}$, the set $P_k=\{x_k^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval [a_k, b_k].
The set of all possible partitions of a box $I$ is denoted by $\mathbb{R}_I$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I=[a_1, b_1]\times \dots \times [a_n, b_n]$ be a box. For each $k\in\{1, \dots, n\}$, the set $P_k=\{x_k^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval [a_k, b_k].
The set of all possible partitions of a box $I$ is denoted by $\mathbb{R}_I$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $I=[a_1, b_1]\times \dots \times [a_n, b_n]$ be a box. For each $k\in\{1, \dots, n\}$, the set $P_k=\{x_k^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval [a_k, b_k].
The set of all possible partitions of a box $I$ is denoted by $\mathbb{R}_I$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I=[a_1, b_1]\times \dots \times [a_n, b_n]$ be a box. For each $k\in\{1, \dots, n\}$, the set $P_k=\{x_k^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval [a_k, b_k].
The set of all possible partitions of a box $I$ is denoted by $\mathbb{R}_I$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results