$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results