FullPage
definition
concepts
used in
hypothesis
results
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $I=[a_1, b_1]\times \dots\times [a_n, b_n]$ and for each $k\subseteq\{1, \dots, n\}$, $P_k=\{x_{k}^{(i)}:0\leq i\leq l_k\}$ is a partition of the interval $[a_k, b_k]$. Then the set $P=\{P_k:1\leq k\l31 n\}$ is a partition of the box I.
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$
The norm of $P$ is defined as $$\begin{align*} ||P||:=\max_{1\leq k\leq n}||P_k||. \end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results