FullPage
definition
concepts
used in
hypothesis
results
Let $A\subseteq\mathbb{R}^n$, $f:A\to\mathbb{R}^m$, and $\vec{a}\in \text{int}(A)$. Then $\vec{a}$ is a local maximum if there exists some $delta>0$ such that $f(\vec{x})\leq f(\vec{a})$ for all $\vec{x}\in B_{\delta}(\vec{a})$, and $\vec{a}$ is a local minumum if there exists $\delta>0$ such that $f(\vec{x})\geq f(\vec{a})$ for all $\vec{x}\in B_{\delta}(\vec{a})$. Either of the two cases are called local extremum.
Concepts
Coming soonUsed In
Coming soonHypothesis
- If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critical point.
Results
- If the associated Hessian matrix is positive definite, then local minimum.
Let $A\subseteq\mathbb{R}^n$, $f:A\to\mathbb{R}^m$, and $\vec{a}\in \text{int}(A)$. Then $\vec{a}$ is a local maximum if there exists some $delta>0$ such that $f(\vec{x})\leq f(\vec{a})$ for all $\vec{x}\in B_{\delta}(\vec{a})$, and $\vec{a}$ is a local minumum if there exists $\delta>0$ such that $f(\vec{x})\geq f(\vec{a})$ for all $\vec{x}\in B_{\delta}(\vec{a})$. Either of the two cases are called local extremum.
Concepts
Coming soonUsed In
Coming soonHypothesis
- If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critical point.
Results
- If the associated Hessian matrix is positive definite, then local minimum.
FullPage
definition
concepts
used in
hypothesis
results