FullPage
definition
concepts
used in
hypothesis
results
Let $U\subseteq\mathbb{R}$, and $\vec{a}\in\text{int}(U)$. The linear approximation of a function $f$ with respect to $\vec{a}$ is a linear function,
$$\begin{align*}
f(\vec{x})\approx l_{\vec{a}}^f:=f(\vec{a})+Df(\vec{a})(\vec{x}-\vec{a})
\end{align*}$$
Concepts
This comes from the definition and alternate definition of derivatives. If $f$ is differentiable at a point $\vec{a}$, then $$\begin{align*} f(\vec{x})=f(\vec{a})+Df(\vec{a})(\vec{x}-\vec{a})+r(\vec{x}-\vec{a}), \end{align*}$$ where $r(\vec{x}-\vec{a})$ satisfies $\lim_{\vec{x}\to\vec{a}}\frac{r(\vec{x}-\vec{a})}{\vec{x}-\vec{a}}$.If $\vec{x}-\vec{a}$ is small, as it is for a linear approximation near $\vec{a}$, then $r(\vec{x}-\vec{a})$ is really small, so $$\begin{align*} f(\ve{x})\approx f(\vec{x})+Df(\vec{x})(\vec{x}-\vec{a}) \end{align*}$$
Used In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $U\subseteq\mathbb{R}$, and $\vec{a}\in\text{int}(U)$. The linear approximation of a function $f$ with respect to $\vec{a}$ is a linear function,
$$\begin{align*}
f(\vec{x})\approx l_{\vec{a}}^f:=f(\vec{a})+Df(\vec{a})(\vec{x}-\vec{a})
\end{align*}$$
Concepts
This comes from the definition and alternate definition of derivatives. If $f$ is differentiable at a point $\vec{a}$, then $$\begin{align*} f(\vec{x})=f(\vec{a})+Df(\vec{a})(\vec{x}-\vec{a})+r(\vec{x}-\vec{a}), \end{align*}$$ where $r(\vec{x}-\vec{a})$ satisfies $\lim_{\vec{x}\to\vec{a}}\frac{r(\vec{x}-\vec{a})}{\vec{x}-\vec{a}}$.If $\vec{x}-\vec{a}$ is small, as it is for a linear approximation near $\vec{a}$, then $r(\vec{x}-\vec{a})$ is really small, so $$\begin{align*} f(\ve{x})\approx f(\vec{x})+Df(\vec{x})(\vec{x}-\vec{a}) \end{align*}$$
Used In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results