$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $I$ be a box and $P$ a partition of $I$. Then the associated indexing set is $J:=\{1, \dots, l_1\}\times\dots\tiimes\{1, \dots, l_n\}$.
Let $\vec{a}=(a_1, \dots, a_n)\in J$. $\vec{a}$ is a multiindex of $J$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I$ be a box and $P$ a partition of $I$. Then the associated indexing set is $J:=\{1, \dots, l_1\}\times\dots\tiimes\{1, \dots, l_n\}$.
Let $\vec{a}=(a_1, \dots, a_n)\in J$. $\vec{a}$ is a multiindex of $J$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $I$ be a box and $P$ a partition of $I$. Then the associated indexing set is $J:=\{1, \dots, l_1\}\times\dots\tiimes\{1, \dots, l_n\}$.
Let $\vec{a}=(a_1, \dots, a_n)\in J$. $\vec{a}$ is a multiindex of $J$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
Let $I$ be a box and $P$ a partition of $I$. Then the associated indexing set is $J:=\{1, \dots, l_1\}\times\dots\tiimes\{1, \dots, l_n\}$.
Let $\vec{a}=(a_1, \dots, a_n)\in J$. $\vec{a}$ is a multiindex of $J$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results