Processing math: 0%
\newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}}
FullPage
result
concepts
hypothesis
implications
proof

Fubini's Theorem

Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Fubini's Theorem

Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof
FullPage
result
concepts
hypothesis
implications
proof

Fubini's Theorem

Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon

Fubini's Theorem

Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}

Concepts

Coming soon

Hypothesis

Coming soon

Results

Coming soon

Proof

Coming soon
FullPage
result
concepts
hypothesis
implications
proof