FullPage
result
concepts
hypothesis
implications
proof
Fubini's Theorem
Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonFubini's Theorem
Let A\subseteq\mathbb{R}^n and B\subseteq\mathbb{R}^m be two boxes, and let f:A\times B\to\mathbb{R} be a bounded and integrable function on A\times B. If for each \vec{x}\in A, the function f(\vec{x}, \cdot) is integrable on B, then \int_Bf(\cdot, \vec{y})d\vec{y} is integrable on A and \begin{align*} \int_{A\times B}f(\vec{x}, \vec{y}) d(\vec{x}, \vec{y})=\int_A[\int_B f(\vec{x}, \vec{y}) d\vec{y}] d\vec{x} \end{align*}Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof