FullPage
definition
concepts
used in
hypothesis
results
Let $A\subseteq\mathbb{R}^n$ be open, $f:A\to\mathbb{R}^m$, and $\vec{u}$ a unit vector. The directional derivative of $f$ in the direction $\vec{y}$, denoted $D_{\vec{u}}$, is defined as
$$\begin{align*}
D_{\vec{h}}(\vec{a})=\lim_{h\to\0}\frac{f(\vec{a}+h\vec{u})-f(\vec{a})}{|h|}
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $A\subseteq\mathbb{R}^n$ be open, $f:A\to\mathbb{R}^m$, and $\vec{u}$ a unit vector. The directional derivative of $f$ in the direction $\vec{y}$, denoted $D_{\vec{u}}$, is defined as
$$\begin{align*}
D_{\vec{h}}(\vec{a})=\lim_{h\to\0}\frac{f(\vec{a}+h\vec{u})-f(\vec{a})}{|h|}
\end{align*}$$
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results