FullPage
definition
concepts
used in
hypothesis
results
A multivariable function is differentiable if there exist some linear map $T(\vec{h})$ such that
$$\begin{align*}
\lim_{\vec{h}\to\vec{0}}\frac{f(\vec{a}+\vec{h})-f(\vec{a})-T(\vec{h})}=0
\end{align*}$$
Concepts
In the one-dimensional case, the derivative tends to be defined as $$\begin{align*} f'(a)=\lim_{h\to 0} \frac{f(a+h)-f(h)}{|h|}. \end{align*}$$ Notice how we can rearrage this into $$\begin{align*} \frac{hf'(a)}{h}&=\lim_{h\to 0}\frac{f(a+h)-f(h)}{|h|}\\ \implies 0 &=\lim_{h\to 0} \frac{f(a+h)-f(h)-hf'(a)}{|h|} \end{align*}$$ The linear function $T(\vec{h})$ is basically the multivariable version of $hf'(a)$.Used In
Coming soonHypothesis
Coming soonResults
Coming soon
A multivariable function is differentiable if there exist some linear map $T(\vec{h})$ such that
$$\begin{align*}
\lim_{\vec{h}\to\vec{0}}\frac{f(\vec{a}+\vec{h})-f(\vec{a})-T(\vec{h})}=0
\end{align*}$$
Concepts
In the one-dimensional case, the derivative tends to be defined as $$\begin{align*} f'(a)=\lim_{h\to 0} \frac{f(a+h)-f(h)}{|h|}. \end{align*}$$ Notice how we can rearrage this into $$\begin{align*} \frac{hf'(a)}{h}&=\lim_{h\to 0}\frac{f(a+h)-f(h)}{|h|}\\ \implies 0 &=\lim_{h\to 0} \frac{f(a+h)-f(h)-hf'(a)}{|h|} \end{align*}$$ The linear function $T(\vec{h})$ is basically the multivariable version of $hf'(a)$.Used In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results