FullPage
definition
concepts
used in
hypothesis
results
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.
Concepts
Coming soonUsed In
- The diffinition of a saddle point <\ul>
Hypothesis
Coming soonResults
- If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.
Concepts
Coming soonUsed In
- The diffinition of a saddle point <\ul>
Hypothesis
Coming soonResults
- If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
FullPage
definition
concepts
used in
hypothesis
results