$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.

Concepts

Coming soon

Used In

  • The diffinition of a saddle point
  • <\ul>

Hypothesis

Coming soon

Results

  • If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.

Concepts

Coming soon

Used In

  • The diffinition of a saddle point
  • <\ul>

Hypothesis

Coming soon

Results

  • If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.

Concepts

Coming soon

Used In

  • The diffinition of a saddle point
  • <\ul>

Hypothesis

Coming soon

Results

  • If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
Let $A\subseteq\mathbb{R}^n$, and $f:A\to\mathbb{R}^m$. $\vec{a}$ is a critical point or stationary point of $f$ if $\nabla f(\vec{a})=0$.

Concepts

Coming soon

Used In

  • The diffinition of a saddle point
  • <\ul>

Hypothesis

Coming soon

Results

  • If $f(\vec{a})$ is a local maximum or minimum, then $\vec{a}$ is a critial point.
FullPage
definition
concepts
used in
hypothesis
results