FullPage
definition
concepts
used in
hypothesis
results
Let $X$ be a nonempty subset of $\mathbb{R}^n$. Then $X$ is convex if for any $\vec{x}, \vec{y}\in X$, and any $t\in[0, 1]$, the point $\vec{x}+t(\vec{y}-\vec{x})$ is in $X$.
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
Let $X$ be a nonempty subset of $\mathbb{R}^n$. Then $X$ is convex if for any $\vec{x}, \vec{y}\in X$, and any $t\in[0, 1]$, the point $\vec{x}+t(\vec{y}-\vec{x})$ is in $X$.
Concepts
Coming soonUsed In
Coming soonHypothesis
Coming soonResults
Coming soon
FullPage
definition
concepts
used in
hypothesis
results