FullPage
result
concepts
hypothesis
implications
proof
Content Zero Condition
Let $S\subseteq\mathbb{R}^n$ be a nonempty and bounded set. $S$ has content zero if and only if for all $\epsilon >0$, there exists a finite set of boxes $\{I_i\subseteq\mathbb{R}^n:1\leq i\leq m\}$ such that $$\begin{align*} S\subseteq \bigcup_{i=1}^m I_i \end{align*}$$ and $$\begin{align*} \sum_{i=1}^{m}\mu(I_i)<\epsilon \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soonContent Zero Condition
Let $S\subseteq\mathbb{R}^n$ be a nonempty and bounded set. $S$ has content zero if and only if for all $\epsilon >0$, there exists a finite set of boxes $\{I_i\subseteq\mathbb{R}^n:1\leq i\leq m\}$ such that $$\begin{align*} S\subseteq \bigcup_{i=1}^m I_i \end{align*}$$ and $$\begin{align*} \sum_{i=1}^{m}\mu(I_i)<\epsilon \end{align*}$$Concepts
Coming soonHypothesis
Coming soonResults
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof