$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
definition
concepts
used in
hypothesis
results
A box is a set of the form $I=[a_1, b_1]\times \dots \times[a_n, b_n]\subseteq\mathbb{R}^n$ where $[a_k, b_k]$ is a closed interval for $k\in\{1, 2, \dots, n\}$.
The volume of a box $I$ is $\mu(I)=\prod_{k=1}^n(b_k-a_k)$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
A box is a set of the form $I=[a_1, b_1]\times \dots \times[a_n, b_n]\subseteq\mathbb{R}^n$ where $[a_k, b_k]$ is a closed interval for $k\in\{1, 2, \dots, n\}$.
The volume of a box $I$ is $\mu(I)=\prod_{k=1}^n(b_k-a_k)$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results
FullPage
definition
concepts
used in
hypothesis
results
A box is a set of the form $I=[a_1, b_1]\times \dots \times[a_n, b_n]\subseteq\mathbb{R}^n$ where $[a_k, b_k]$ is a closed interval for $k\in\{1, 2, \dots, n\}$.
The volume of a box $I$ is $\mu(I)=\prod_{k=1}^n(b_k-a_k)$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
A box is a set of the form $I=[a_1, b_1]\times \dots \times[a_n, b_n]\subseteq\mathbb{R}^n$ where $[a_k, b_k]$ is a closed interval for $k\in\{1, 2, \dots, n\}$.
The volume of a box $I$ is $\mu(I)=\prod_{k=1}^n(b_k-a_k)$.

Concepts

Coming soon

Used In

Coming soon

Hypothesis

Coming soon

Results

Coming soon
FullPage
definition
concepts
used in
hypothesis
results