FullPage
result
Concepts
If
Only If
proof
Alternate Definition of Differentiability
Let $A\subseteq\mathbb{R}^n$, $\vec{a}\in \text{int}(A)$, and $f:A\to\mathbb{R}^m$. The function $f$ is differentiable at $\vec{a}$ if and only if there exists a linear map $l:\mathbb{R}^n\to\mathbb{R}^m$ and a function $r:A\to\mathbb{R}^m$ that is continuous at $\vec{a}$ and satisifies $r(\vec{a})=0$ such that $$\begin{align*} f(\vec{x})=f(\vec{a})+l(\vec{x}-\vec{a})+r(\vec{x})||\vec{x}-\vec{a}|| \end{align*}$$Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soonAlternate Definition of Differentiability
Let $A\subseteq\mathbb{R}^n$, $\vec{a}\in \text{int}(A)$, and $f:A\to\mathbb{R}^m$. The function $f$ is differentiable at $\vec{a}$ if and only if there exists a linear map $l:\mathbb{R}^n\to\mathbb{R}^m$ and a function $r:A\to\mathbb{R}^m$ that is continuous at $\vec{a}$ and satisifies $r(\vec{a})=0$ such that $$\begin{align*} f(\vec{x})=f(\vec{a})+l(\vec{x}-\vec{a})+r(\vec{x})||\vec{x}-\vec{a}|| \end{align*}$$Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soon
FullPage
result
concepts
If
Only If
proof