FullPage
result
concepts
hypothesis
implications
proof
Alternate Characterization of Continuity
Let $A\subseteq\mathbb{R}^n$ and let $f:A\to\mathbb{R}^m$. For any point $\vec{a}\in A\cap A^a$, the function $f$ is continuous at $\vec{a}$ if and only if $\lim_{\vec{x}\to\vec{a}}f(\vec{x})=f(\vec{a})$.Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soonAlternate Characterization of Continuity
Let $A\subseteq\mathbb{R}^n$ and let $f:A\to\mathbb{R}^m$. For any point $\vec{a}\in A\cap A^a$, the function $f$ is continuous at $\vec{a}$ if and only if $\lim_{\vec{x}\to\vec{a}}f(\vec{x})=f(\vec{a})$.Concepts
Coming soonIf
Coming soonOnly If
Coming soonProof
Coming soon
FullPage
result
concepts
hypothesis
implications
proof