$ \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\abs}[2][]{\left\lvert#2\right\rvert_{\text{#1}}} \newcommand{\ket}[1]{\left\lvert#1 \right.\rangle} \newcommand{\bra}[1]{\langle\left. #1\right\rvert} \newcommand{\braket}[1]{\langle #1 \rangle} \newcommand{\dd}{\text{d}} \newcommand{\dv}[2]{\frac{\dd #1}{\dd #2}} \newcommand{\pdv}[2]{\frac{\partial}{\partial #1}} $
FullPage
result
Concepts
If
Only If
proof

Open and Closed

A set $X\subseteq\mathbb{R}^n$ is open if and only if its complement $X'=\{\vec{x}\in\mathbb{R}^n, \vec{x}\notin X\}$ is closed.

Concepts

Coming soon

If

Coming soon

Only If

Coming soon

Proof

Coming soon

Open and Closed

A set $X\subseteq\mathbb{R}^n$ is open if and only if its complement $X'=\{\vec{x}\in\mathbb{R}^n, \vec{x}\notin X\}$ is closed.

Concepts

Coming soon

If

Coming soon

Only If

Coming soon

Proof

Coming soon
FullPage
result
concepts
If
Only If
proof
FullPage
result
Concepts
If
Only If
proof

Open and Closed

A set $X\subseteq\mathbb{R}^n$ is open if and only if its complement $X'=\{\vec{x}\in\mathbb{R}^n, \vec{x}\notin X\}$ is closed.

Concepts

Coming soon

If

Coming soon

Only If

Coming soon

Proof

Coming soon

Open and Closed

A set $X\subseteq\mathbb{R}^n$ is open if and only if its complement $X'=\{\vec{x}\in\mathbb{R}^n, \vec{x}\notin X\}$ is closed.

Concepts

Coming soon

If

Coming soon

Only If

Coming soon

Proof

Coming soon
FullPage
result
concepts
If
Only If
proof